Tuesday, December 30, 2008

CDMA dan Spreed Spectrum


Sistem yang multiple access (MA) adalah sistem yang dapat melayani banyak pelanggan (user) secara bersama-sama (simultan). Agar terjadi multiple access, maka harus tersedia kanal-kanal/saluran-saluran yang jumlahnya lebih dari satu. Jika pada saat yang sama terdapat 10 pelanggan yang ingin dilayani, maka diperlukan kanal sebanyak 10 buah pula.

Dengan sistem multiple access yang bagus, tidak akan terjadi antrean panjang dan macet. Secara umum, bisa saja sistem multiple access diterapkan dalam berbagai bidang kehidupan, seperti sistem pembayaran di loket PLN, teller bank, dan sebagainya. Tapi pada kenyataannya, penerapan pada bidang telekomunikasilah yang banyak memunculkan multiple access baru.

Tren sistem telepon seluler mendongkrak pemakaian multiple access untuk sistem komunikasi bergerak (mobile communication system). Kemajuan yang dicapai oleh telepon seluler bahkan melebihi sistem komunikasi bergerak lain seperti telepon cordless (sekarang juga lagi musim), paging (yang dulu ngetop tahun 1970-1980-an), dan PCS (personal communication standard). Perkembangan telepon seluler yang kian menjadi-jadi dengan berbagai fasilitas ciamik yang andal (semacam MMS, mobile Internet, dan lain- lain), menyebabkan semakin getolnya pencarian-pencarian sistem multiple access baru yang lebih tanggap dan cepat dalam melayani banyak pelanggan.

Hingga saat ini dua teknik pendahulu yang masih digunakan adalah FDMA (frequency division multiple access) dan TDMA (time division multiple access). Pengguna teknik FDMA cukup banyak juga. Salah satunya adalah telepon seluler berbasis AMPS, yang di Indonesia dipakai pada awal munculnya telepon seluler. AMPS (advanced mobile phone system) adalah sistem seluler Amerika Serikat pertama (dan analog) yang dikembangkan oleh AT&T Bell Laboratories pada akhir tahun 1970-an.

Pemakai teknik TDMA pun juga cukup banyak. Salah satunya adalah telepon seluler berbasis GSM, yang sekarang lagi marak di Indonesia. GSM yang mulanya adalah singkatan dari groupe spe'cial mobile diganti menjadi global system for mobile communication untuk keperluan pemasaran yang lebih luas. Ia merupakan standar seluler digital generasi kedua yang dikembangkan oleh Eropa untuk menyatukan sistem selulernya. Bermula dengan dikenalkan pada pasar Eropa tahun 1991, kini GSM telah menjadi standar terpopuler di dunia untuk radio seluler baru dan peralatan komunikasi pribadi. Karena kepopuleran itulah, teknik TDMA ikut terdongkrak dan seolah "kagak ade matinye".

Akan tetapi waktu terus berjalan, dan pesaing-pesaing baru selalu akan muncul untuk mengganti pemain lama. Salah satunya adalah teknik CDMA (code division multiple access). Dengan lebih banyak kelebihan (dan sedikit kekurangan), teknik yang diusung oleh US Narrowband SpreadSpectrum (IS-95) ini, mulai berkembang dan terus berkembang. GSM yang tidak tinggal diam, tentu akan berusaha mempertahankan takhtanya. Kita saksikan saja persaingan yang kian marak ini dan barangkali untuk beberapa dekade, kita sementara menjadi penonton saja.

FDMA

FDMA adalah sistem multiple access yang menempatkan seorang pelanggan pada sebuah kanal berbentuk pita frekuensi (frequency band) komunikasi. Jika satu pita frekuensi dianggap sebagai satu jalan, maka FDMA merupakan teknik "satu pelanggan, satu jalan". Pada saat pelanggan A sedang menggunakan jalan itu, maka pelanggan lain tidak dapat menggunakan sebelum pelanggan A selesai.

Jadi, kalau dalam waktu yang bersamaan ada 100 pelanggan yang ingin berkomunikasi dengan rekannya, maka sudah tentu diperlukan 100 pita frekuensi. Kalau setiap pita memerlukan lebar 30 Kilo Hertz (kHz) dan frekuensi yang digunakan berawal dari 890 Mega Hertz (MHz), maka:

• Pita frekuensi kanal 1 mulai dari 890 MHz hingga 890,030 Mhz

• Pita frekuensi kanal 2 mulai dari 890,030 MHz hingga 890,060 MHz

• Pita frekuensi kanal 3 mulai dari 890,060 MHz hingga 890,090 MHz

• dan seterusnya.

Sedangkan lebar total seluruh pita yang digunakan adalah:

100 x 30.000 Hz = 3.000.000 Hz = 3 MHz.

Artinya, jika frekuensi yang digunakan mempunyai batas bawah 890 MHz, maka batas atasnya adalah 893 MHz.

Akan tetapi, frekuensi yang tersedia untuk komunikasi bergerak dibatasi oleh peraturan yang ada karena frekuensi-frekuensi lain pasti digunakan untuk jatah keperluan yang lain pula. Sementara jatah frekuensi yang ada pun harus dibagi antarpenyelenggara telepon seluler. Karena itu, untuk memperbanyak kapasitas dengan jumlah kanal yang terbatas, digunakan trik-trik tertentu sesuai dengan strategi si penyelenggara.

TDMA

Berbeda dengan FDMA yang memberikan satu pita frekuensi untuk dipakai satu pelanggan, TDMA memberikan satu pita frekuensi untuk dipakai beberapa pelanggan. Jadi kanal-kanal komunikasi dirupakan dalam bentuk slot-slot waktu. Slot waktu adalah berapa lama seorang pelanggan mendapat giliran untuk memakai pita frekuensi. Satu slot waktu digunakan oleh satu pelanggan. Slot-slot waktu ini dibingkai dalam satu periode yang disebut satu frame. Jadi misalkan ada 10 pelanggan yang masing-masing adalah A, B, C, D, E, F, G, H, I, dan J, maka dalam satu frame terdapat 10 slot waktu yang merupakan giliran tiap pelanggan untuk menggunakan pita frekuensi yang sama.

Proses komunikasi multi-access dilakukan dengan menjalankan frame ini berulang- ulang sehingga akan muncul urutan giliran pemakaian saluran seperti: A-B-C-D-E-F-G-H-I-J-A-B-C-D- E-F-G-H-I-J-A-B-C-dan seterusnya. Tentu saja harus ada pembatasan jumlah pelanggan yang menggunakan satu pita frekuensi ini. Jika tidak dibatasi, periode frame akan terlalu panjang dan akibatnya timbul komunikasi terputus-putus yang mengganggu pembicaraan.

Karena sifatnya yang tidak kontinyu (tidak terjadi pemakaian pita frekuensi terus menerus oleh satu pelanggan dalam satu periode pembicaraan), maka teknik TDMA hanya dapat mengakomodasi data digital atau modulasi digital. Sehingga sinyal-sinyal analog yang akan dikirim, harus diubah menjadi format digital dahulu.

CDMA

Teknik CDMA adalah temuan yang lebih baru dibandingkan dengan FDMA dan TDMA. Teknik CDMA berawal pada tahun 1949 ketika Claude Shannon dan Robert Pierce (yang banyak jasanya untuk kemajuan teknologi telekomunikasi saat ini) menyampaikan ide dasar CDMA. Teknik ini merupakan temuan yang brilian karena kanal yang satu dengan lainnya tidak dibedakan dari frekuensi/FDMA atau waktu/TDMA yang secara awam lebih mudah dipahami, melainkan dengan perbedaan kode. Jadi pada CDMA, seluruh pelanggan menggunakan frekuensi yang sama pada waktu yang sama.

Dalam diagram blok CDMA tampak bahwa data input dari satu pelanggan dikalikan dengan salah satu dari banyak kode PN (pseudo noise). Jumlah kemungkinan kode yang dihasilkan oleh generator kode PN identik dengan jumlah kanal yang disediakan. Jika generator kode PN mampu menghasilkan 100 kode, maka sebanyak itu pula kanal yang diperoleh. Oleh modulator hasil perkalian antara input data dengan kode PN ditumpangkan pada sinyal RF (radio frequency) agar dapat dikirim lewat udara.

Di penerima, demodulator memisahkan sinyal pesan dari sinyal RF yang ditumpanginya. Sinyal pesan yang mengandung kode ini dicocokkan dengan kode PN di penerima. Sinyal pesan akan dipisahkan dari kode dan diteruskan jika kode PN pada sinyal masuk sama dengan kode PN pada penerima.

CDMA (juga disebut DSSS/ direct sequence spread spectrum) merupakan salah satu dari dua jenis teknik murni spread spectrum multiple access (SSMA). Jenis lainnya dikenal sebagai FHMA (frequency hopping spread spectrum). Kedua jenis ini tergolong SSMA karena sinyalnya tersebar (spread) pada spektrum pita frekuensi yang lebar. Pada CDMA, penyebaran sinyal diperoleh akibat proses perkalian data input (yang mempunyai waktu perubahan lambat) dengan kode PN (yang mempunyai waktu perubahan cepat).

Walaupun pita frekuensinya lebar, tegangan sinyal yang dihasilkan sangat kecil, menyerupai noise (bising) yang selalu menyertai gelombang radio. Sehingga apabila dimonitor oleh penerima lain, sinyal yang dipancarkan oleh pengirim berbasis CDMA hanya berupa noise (seolah-olah menunjukkan ketiadaan sinyal pancar) yang tidak mengganggu sinyal lain. Sifat CDMA yang lain adalah kemampuannya untuk tahan terhadap jamming (penutupan oleh sinyal yang lebih kuat) pada pita frekuensi sempit. Hal ini terjadi karena jamming pada pita frekuensi sempit itu tidak akan mengganggu sinyal-sinyal CDMA yang tersebar di pita frekuensi lain.

Biar begitu jika diterapkan pada telepon seluler, CDMA mempunyai masalah yang disebut near-far problem. Masalah ini terjadi akibat pemakaian pita frekuensi yang sama pada waktu yang sama. Akibatnya, pelanggan yang paling dekat dengan base station (BTS) akan mendominasi BTS karena sinyalnya diterima (oleh BTS) paling besar dibandingkan dengan pelanggan lain yang jaraknya lebih jauh. Bagi pelayanan yang baik, hal itu tidak diharapkan. Untuk mengatasinya dipakailah teknik power control. Teknik ini menyebabkan BTS memerintahkan ponsel pelanggan untuk mengurangi daya pancar (secara otomatis) ketika sinyalnya diterima paling besar. Sehingga seluruh pelanggan di areal cakupan BTS akan diterima dengan besar sinyal yang sama.

CDMA dapat dikombinasikan dengan teknik lain untuk menjadi teknik hibrid semacam: FCDMA yang merupakan kombinasi dari FDMA dan CDMA, TCDMA yang merupakan kombinasi dari TDMA dan CDMA. Juga ada DS-FHMA yang merupakan kombinasi dari CDMA/DSSS dengan FHMA.

Jadi, dunia komunikasi bergerak akan terus melejit dan melahirkan teknologi terbaru. Tidak hanya fitur-fitur ponsel, tetapi juga dukungansaluran telekomunikasi. Dewasa ini sistem komunikasi sudah menawarkan suatu kecepatan dan kapasitas, yaitu kecepatan yang tinggi dan kapasitas data yang besar. Infrastruktur telekomunikasi yang dibangun harus menjanjikan kompatibilitas yang tinggi dengan suatu sistem komunikasi yang lain. Disinilah sistem komunikasi digital menjadi idola baru bagi industri telekomunikasi saat ini. Sistem digital disamping mempunyai kompatibilitas yang tinggi dalam integrasi dengan sistem lain, juga adanya kemudahan dalam implementasi secara perangkat keras. Oleh karenanya sistem komunikasi digital semakin dikembangkan untuk memperoleh kecepatan yang tinggi dan kapasitas data yang semakin besar. Sistem komunikasi digital juga memilliki kualitas data yang lebih baik, karena dapat dilakukan pengecekan kesalahan dalam transmisi datanya.

Lahirnya sistem komunikasi spread spectrum pada pertengahan tahun 1950 dilatarbelakangi oleh kebutuhan akan sistem komunikasi yang dapat mengatasi masalah interferensi, dapat menjamin kerahasiaan informasi yang dikirim dan dapat beroperasi pada tingkat S/N (signal to noise ratio) yang rendah atau tahan terhadap derau yang besar. Dalam sistem komunkasi sekarang ini, dimana penggunaan frekuensi sudah cukup padat sehingga interferensi dan noise dari transceiver lain cukup besar. Dalam komunikasi radio kita juga sering mendengar adanya penyadapan pembicaraan pada handphone oleh pesawat radio lain. Namun dengan sistem spread spektrum ketakutan yang dialami pada sistem komunikasi diatas akan dapat di atasi karena data yang ditransmit pada sistem spread spektrum adalah data acak yang dikenal sebagai noise. Jadi jika penerima tidak mengetahui code yang digunakan untuk melebarkan data maka penerima hanya akan menerima sinyal noise saja. Istilah spread spectrum digunakan karena pada sistem ini sinyal yang ditransmisikan memiliki bandwidth yang jauh lebih lebar dari bandwidth sinyal informasi (mencapai ribuan kali). Proses penebaran bandwidth sinyal informasi ini disebut spreading.

Kelebihan lain yang dimiliki sistem spread spektrum adalah sistem ini dapat digunakan untuk multiple acces secara CDMA (Code Division Multiple Acces). Sistem CDMA yaitu suatu sistem multiple akses yang dapat dilakukan pada frekuensi dan waktu yang sama, caranya dengan menggunakan kode yang berbeda. Jika dibanding sistem multiple akses yang lain seperti FDMA (Frekuency Division Multiple Acces) dan TDMA (Time Division Multiple Acces), maka CDMA merupakan sistem yang sedang di minati oleh perusahaan komunikasi, karena dapat digunakan pada frekuensi yang sama secara bersamaan.

Di Indonesia belum banyak yang mengunakan sistem CDMA untuk infrastruktur telekomunikasinya. Perusahaan telepon seluler sebagian besar menggunakan sistem TDMA yaitu untuk telepon seluler GSM. Sedangkan perusahaan telepon seluler yang sudah menggunakan sistem CDMA adalah Komselindo. Sistem yang sekarang sudah digunakan adalah narrow-band CDMA dan rencananya Komselindo akan membuat infrastruktur untuk wide-band CDMA.

Spread sprectrum sendiri belum banyak digunakan , dalam bidang jaringan komputer kita sudah mengenal Wave LAN. Wave LAN ini menggunakan spread spectrum untuk mentransmisikan datanya. Sistem ini dibuat dalam bentuk card. Wave LAN sendiri mempunyai kecepatan yang cukup tinggi untuk teknologi radio pada frekuensi rendah, yaitu 1,5 Mbps. Dengan kecepatan sebesar itu Wave LAN sudah setara dengan komunikasi T1 pada VSAT yang sering digunakan untuk komunikasi-komunikasi di indonesia. Kecepatan ini juga jauh lebih cepat jika dibandingkan dengan modem radio yang paling cepat yang pernah yang umum digunakan untuk komunikasi radio paket, yaitu hanya 64 Kbps, inipun harus menggunakan transceiver yang mempunyai bandwith yang lebar. Namun alat ini masih cukup mahal untuk pasaran di indonesia, satu card harnganya sekitar $ 5.000 USA.

Dalam teknik spread spektrum sendiri di kenal beberapa cara modulasi yang digunakan untuk melebarkan dan mangacak datanya. Teknik spreading yang terkenal dan banyak dipilih para produsen dalam desain produk adalah Direct Sequence Spread Spektrum (DSSS). Sistem ini dipilih karena adanya kemudahan dalam mengacak data yang akan dispreading. Dalam DSSS spreading hanya menggunakan sebuah generator noise yang periodik yang di sebut Pseudo Noise Generator.

Sebuah sistem spread-spectrum harus memenuhi kriteria sebagai berikut :

  1. Sinyal yang dikirimkan menduduki bandwidth yang jauh lebih lebar daripada bandwidth minimum yang diperlukan untuk mengirimkan sinyal informasi
  2. Pada pengirim terjadi proses spreading yang menebarkan sinyal informasi dengan bantuan sinyal kode yang bersifat independen terhadap informasi
  3. Pada penerima terjadi proses despreading yang melibatkan korelasi antara sinyal yang diterima dan replika sinyal kode yang dibangkitkan sendiri oleh suatu generator lokal.

Kode yang digunakan pada sistem spread spectrum memiliki sifat acak tetapi periodik sehingga disebut sinyal acak semu (pseudo random). Kode tersebut bersifat sebagai noise tapi deterministik sehingga disebut juga noise semu (pseudo noise). Pembangkit sinyal kode ini disebut Pseudo Rando Generator (PRG) atau pseudo noise generator (PNG). PRG inilah yang akan melebarkan dan sekaligus mengacak sinyal data yang akan dikirimkan. Dalam komunikasi spread spectrum semakin lebar bandwidth akan semakin tahan terhadap jamming dan akan semakin terjamin tingkat kerahasiaannya. Disamping itu akan semakin banyak kanal yang bisa dipakai. Seperti yang di terangkan oleh Shanon , salah seorang ahli statistik telekomunikasi, dalam ilmu komunikasi dinyatakan bahwa kapasitas kanal akan sebanding dengan bandwidth transmisi dan logaritmik dari S/N-nya. Jadi agar sistem komunikasi dapat bekerja dengan kapasitas kanal yang tetap pada level daya noise yang tinggi (S/N yang rendah), dapat dilakukan dengan jalan memperbesar bandwidth transmisi W. Disamping itu Shannon juga mengemukakan bahwa sebuah kanal dapat mentransmisikan informasi dengan probabilitas salah yang kecil apabila terhadap infromasi tersebut dilakukan pengkodean yang tepat dan rate infromasi yang tidak melebihi kapasitas kanal meskipun kanal tersebut memuat derau acak.

Sistem komunikasi spread spectrum sebagai salah satu sistem komunikasi digital, memiliki beberapa kelebihan dibandingkan sistem komunikasi analog yaitu:

  • Lebih kebal terhadap jamming
  • Mampu menekan interferensi
  • Dapat dioperasikan pada level daya yang rendah
  • Kemampuan multiple access secara CDMA (Code Division Multiple Access)
  • Kerahasiaan lebih terjamin
  • Ranging

Dalam teknik spread spectrum sendiri ada beberapa macam cara yang digunakan, yaitu Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FSSS), Time Hopping Spread Spectrum (TSSS) dan Chirp atau Hybrid Spread Spectrum. Pada tiap-tiap metode mempunyai keunggulan sendiri-sendiri, namun secara umum DSSS mempunyai unjuk kerja terbaik untuk gangguan noise dan anti jamming, serta paling susah untuk dideteksi. Namun ada kekurangan pada DSSS ini, yang sering menjadi kendala dalam implementasinya, yaitu pada proses sinkronisasi sinyal yang diterima dengan sinyal dari generator noise lokal pada penerima.



MULTIPLEXING

Multiplexing the basis of a data allow many relationships network.Multiplexing (connections) over the network share the same transmission facilities. Two main types of multiplexing are discussed here; Time-division multiplexing (TDM) and Statistical multiplexing (statmux).

TDM TDM

Time-division multiplexing is allocated a certain amount of time in a physical circuit to a number of connections.. Because of the physical circuits typically have data flow velocity is constant, then the allocation of the amount of time in the circuit is equal to the bandwidth allocation.

TDM is the synchronization technology. Data is transmitted into the network to the primary time source (master clock), so that there would be no traffic jams when the data is transmitted.

One of the main problems of TDM is the bandwidth allocated to a number of connections is only allocated to those connections, whether they're used or notSo we are still paying for unused capacity, this result is quite expensive TDM.

Statistical Multiplexing Statistical Multiplexing

Statistical multiplexing become popular due to cost issues in TDM. Statistical multiplexing transmission bandwidth is shared between all users of a network, without a dedicated one reserved for the connection.

One of the benefits of TDM statmux is cheaper. With statmux network, we can sell more capacity than the network we have. In theory, not all users want the data transmission network with a maximum speed at the same time.

There are several technologies statmux, there are three main things of interest in this technology in the past 10 years are; IP, Frame Relay, and ATM. The MPLS can be said is the fourth type of statmux technology.

Statmux technology works by dividing the network traffic into discrete units and handle all the units separately. In IP, the unit is called a packet; on Frame Relay is called frame; the ATM cell is called. The above items have the same concept in each case. Stamux networks allows carriers handle more than that owned by the network used (oversubscription), are much cheaper than the TDM circuit.

Issues - issues that are in Statmux

Statmux introduce some things that are not found in TDM networks. When the packet enters the network is not simultaneous (asynchronous), it resulted in conflicting sources. If two packages right into the router at the same time (coming from two different interfaces) and addressed to the same output interface, it is a source of conflict. One of the packages have to wait another packet to be transmitted, while packets are not transmitted to wait until the first packet sent on the link in question. Although the time delay occurs, but usually not large.

There are also some things to do with the package contained in the buffers. Some types of traffic (bulk data transfer) are described by way of stored (buffered) while the other traffic (voice, pictures) do not. Necessary so that different treatment mechanisms to meet the demand for different applications used in network.

Statmux technology has 3 abilities that are not owned by TDM technology, namely; buffering (storage), Queuing (queue), and Dropping (Decrease).

Frame Relay has a simple method that can answer these issues. The concept is a committed information rate (CIR) , forward and backward explicit congestion notification ( FECN and BECN ) and discard

IP has a Diff Serv Code Point (DSCP) bits, which evolved from the primary IP bits. IP also have the random early discard (RED), which has the advantage that the TCP both in terms of handling the drop and TCP is the transport-layer protocols of the most widely used for IP.. Finally, IP has a bit of explicit congestion notification (ECN), which is still fairly new and only used a limited basis.

ATM explain the source of the conflict by dividing the data in a small size called cells. ATMs also have the 5 different classes of service, namely:

  • CBR (constant bit rate) CBR (constant bit rate)
  • rt-VBR (real-time variable bit rate) rt-VBR (real-time variable bit rate)
  • nrt-VBR (non-real-time variable bit rate) nrt-VBR (non-real-time variable bit rate)
  • ABR (available bit rate) Abr (available bit rate)
  • UBR (unspecified bit rate) UBR (unspecified bit rate)

IP is a protocol statmux first. RFC 791 defines IP in 1981 and became important in recent years. Frame Relay is not available commercially until the early 1990s, while the ATM appeared in mid-1990.To view or download this please RFC 791 to: http://www.ietf.org/rfc/rfc0791.txt?number=791.

One of the problems faced by network administrators when replacing TDM circuits to Frame Relay and ATM circuits is that running IP over FR or ATM is a protocol running over statmux other statmux protocol. This is usually less than optimal because the existing mechanism in the layer statmux to resolve conflicting resource issues are often not translated perfectly to the other.

That's what the considerations for choosing one of two things. One of them is to avoid congestion at the network layer of the two statmux, or we find a way to map the three layers of conflict regulation mechanism to the second layer of conflict regulation mechanism. Because those two things is something that is not possible and it is not financially attractive to avoid congestion at the network layer statmux two, we need to be able to map the three layers of conflict regulation mechanism to layer two. This is one reason MPLS plays a key role in the development of current networks.

What is Traffic Engineering?

Network engineering be manipulated to suit the network We made the best predictions of how the traffic can go (flow) through the network so that we can choose the appropriate circuits and network equipment (routers, switches, etc.) as appropriate. Engineering Network is usually done in the long run because the time required to install the circuit or new equipment can be very long. Traffic engineering to manipulate traffic in accordance with the network. No matter how persistent traffic in the network tried would not fit 100% with a prediction that has been made. Traffic Engineering is essentially moving traffic so that traffic from the links that have the congestion moved to a link that is not in use. Traffic Engineering can be implemented in a way that is as easy as tweaking IP metrics in the interface or something as complex as running a full-ATM PVC mesh and PVC path optimizing based on past traffic demand.

Traffic engineering with MPLS is an attempt to obtain the best connection-oriented traffic engineering techniques (such as the placement of ATM PVC) and combined with IP routing (IP routing). The theory is to do t raffic engineering with MPLS is more effective as the ATM, but without the many shortcomings of IP over ATM.

MPLS traffic engineering before

IP traffic engineering in general control the point where the IP through our network to alter the usual relationship. There is no possible way to control the path of traffic based on where traffic is coming, but we can only control where the traffic destination. Although both IP traffic engineering and many large networks to use it successfully, we will see that a lot of IP traffic engineering problem that can not be resolved.

ATMs can be used to pass the PVC in the network traffic from a source to the destination. This means we have more things that controlled the flow of traffic in the network. Some of the largest ISPs in the world using an ATM to control traffic on the network. They do this by making an ATM PVC between a set of routers and periodically re-measure and placing it on the ATM PVC traffic study of the router. But the problem that arises is that the router is a full-mesh causes O (N2) will flood when a relationship (link) die and O (N3) when the router dies flooding.This causes much concern in several large networks.



Sunday, December 28, 2008

TEMS Investigation

Estimating GPRS link bit rates in TEMS Investigation

Drive Test Report Example : Procedure1 Procedure2

Abstract

A vast majority of the operators are currently designing and dimensioning GPRS networks. Therefore, the operators are eager to get information on expected link bit rates achievable when introducing GPRS prior to the actual deployment. By introducing a new measure to TEMS Investigation, the users are pro- vided a means of estimating the expected GPRS downlink bit rates by per- forming measurements on a speech channel.

1 Background and motivation

GPRS is a general packet radio service which is intended for GSM net- works. All logical channels, whether GPRS or GSM, use the same symbol modulation: Gaussian minimum shift keying (GMSK). In fact, the radio interface is not altered at all. Besides from different channel coding and different interleaving, the behaviour is very similar seen from a physical layer point of view. This has the implication that it is possible to perform measurements on a speech channel and estimate the performance on a cer- tain GPRS packet data traffic channel.

When GPRS is initially introduced, the interference encountered by GPRS users is typically dominated by speech users. Gradually, as the number of GPRS users increase, this assumption may become invalid. However, by performing measurements and predictions today, the results obtained are likely to reflect the scenario at the initial stage of GPRS deployment.

Each radio block in GPRS consists of four consecutive radio bursts. Each radio block carries 456 bits. These bits are used for data bits (payload), con- trol bits and in most cases some bits for channel error protection. The prob- ability of receiving an erroneous block depends on the current channel quality and the amount of channel protection. The achieved link bit rate is determined by the amount of data bits carried by the radio block, but also on the block error rate (BLER). GPRS provides four different coding schemes (CS). An illustration of the block error rates for CS-1 to CS-4 is shown in figure 1. It is clearly seen that CS-1 is most robust to poor channel quality.


Figure 1. Block Error Probability for different C/I ratios and coding schemes

Even though CS-1 is most robust at poor channel qualities, the peak bit rate for CS-1 is much lower than for example CS-4. Figure 2 shows the resulting link bit rates for the different coding schemes for varying channel qualities. Figure 2 assumes a two-time-slot mobile moving at 50km/h in a radio environment corresponding to a typical urban channel. For good qualities, that is high C/I levels, the peak bit rates are clearly seen. These peak rates are those which can be utilized by upper layer protocols.


Figure 2. Link bit rates for different C/I ratios and coding schemes

To be able to provide error free delivery of the radio blocks, a protocol for handling retransmissions is incorporated in GPRS. This is handled by the RLC protocol. Due to protocol limitations, such as limited transmitter win- dow size, it may happen that the transmitter becomes unable to transmit incoming radio blocks for periods of time. This is referred to as stalling of the protocol, and the implication is that the resulting link bit rate is reduced. Hence, the link bit rate does not only depend on the actual BLER, but also on the behaviour of the RLC protocol. This document does not further describe the background of stalling. For example, [1] describes stalling in detail.

The degree of link bit rate reduction depends on several parameters:

• current channel quality

• number of simultaneous time slots used

• polling interval of packet acknowledgement reports

• round trip delay time for the route “packet control unit (PCU) -
mobile station - PCU”

Figure 3 illustrates the link bit rate reduction due to protocol stalling. The scenario shown assumes a two-slot mobile, a polling interval of 20 radio blocks and a round trip delay of 120ms. The results without regarding pro- tocol stalling is shown with dashed lines in figure 3. It can be seen that the link bit rate for CS-4 is reduced over almost the entire operating range. CS-1, on the contrary, is only affected for rather poor qualities.


Figure 3. Bit rate reduction due to protocol stalling. Results accounting for protocol stall- ing are shown with solid lines.


2 Measurement method

The estimation procedure is essentially performed by utilizing information from the physical layer. This information is produced by the mobile receiver and is collected for each received radio burst by using an ordinary GSM traffic channel. Utilizing information from four consecutive radio bursts, the block error probability (BLEP) for each of the coding schemes (CS-1 to CS-4) is estimated. The BLEP of a certain radio block is highly dependent on the distribution of errors over the corresponding four bursts. For example, consider two radio blocks (A and B) encountering the same mean quality. Further, assume that A has no variation during its four bursts, while B has one very poor burst but the other three bursts have quite good quality. If the mean quality is low, B yields a better block error probability than A thanks to interleaving. By using this high time resolu- tion information (burst-wise) makes it possible to obtain good accuracy of the estimation of the would-be performance.

Since there exists no real GPRS systems, the BLEP estimation procedure is derived based on computer simulations of the physical layer. Different radio environments, as well as different interference characteristics, are considered when developing the BLEP estimator.

Furthermore, as indicated in figure 3, the resulting link bit rate depends on the behaviour of the RLC protocol. In TEMS Investigation, the link bit rate estimation procedure also takes into account the parameters men- tioned in section 1. The number of time slots, round trip delay and polling interval are input by the TEMS user. In addition, it is also possible to replay a log file with an arbitrary protocol parameter setting to examine the impact of different system configurations. For example, the influence of different round trip delays is possible to examine by replaying a previ- ously recorded log file with varying round trip delay times.



3 Drive test example

To illustrate the usage of GPRS predictions, the results from a test drive in a live 1/1-reuse network is shown in figure 4. The number of hopping fre- quencies is 15 and the mobile speed is approximately 50km/h. The left plot shows the estimated throughput without considering RLC protocol stalling. The right plot shows the estimated link bit rates with the same assumptions regarding the RLC protocol as mentioned in section 2, that is, a two-slot mobile, 20 blocks polling interval and 120ms round trip delay. It is seen in figure 4 that CS-4 is clearly best when RLC limitations is not regarded. However, when the protocol limitations are taken into account the right plot reveals that CS-4 is no longer best suited. It is seen that CS-3 is best and it is also noted that CS-3 is not significantly better than CS-2.


Figure 4. Left figure: Link bit rates without regarding RLC limitations. Right figure: Bit rate reduction due to protocol stalling


Wednesday, December 24, 2008

Pathloss 4.0 Tools

Download SRTM3 Version 2 (Newer) Map Here:

1. Africa
2. Australia
3. Eurasia
4. Island
5. North America
6. South America


Here you can download tools for your pathloss:


1. Antena Data Files









2. Radio Data Files











4. Rain Data Base













Pathloss 4.0


BAB III
PATHLOSS 4.0

Pathloss Tutorial Here

3.1 Menentukan Daerah Hujan

Katika mendesain jaringan komunikasi radio Line of sight hal yang paling utama diperhatikan adalah penambahan pelemahan sinyal dikarenakan hujan. Penambahan pelemahan sinyal ini terjadi pada rugi-rugi jalur transmisi yang menggunakan media udara tak terpandu. Sebelum membahas metode perhitungan rugi-rugi ini diperlukan adanya pembahasan mengenai informasi mengenai masalah hujan tersebut. Ketiaka membahas mengenai hujan, maka satuan hujan ini dinyatakan dalam milimeter perjam. Sebelum implementasi jaringan perancang jaringan harus mampu memprediksi kemungkinan yang akan terjadi pada rugi-rugi saluran bebas tersebut. Rekomendasi pembengian daerah hujan yang sering digunakan adalah dari ITU-R Pn.837-1. Dimana pembagiannya dibagi dalam daerah A hingga Q.


Gambar 3.1 Pembagian Daerah Hujan Menurut ITU-R Pn.837-1


Pada pathloss 4.0 daerah hujan ini mengikuti pembagian menurut ITU-R Pn.837-1 yang dibagi dalam daerah A hinggan Q.



Gambar 3.2 Data base pembagian daerah hujan dari pathloss 4.0

3.2 Topologi geografi (Terrain view)

Pathloss 4.0 mendukung penggunaan file digital untuk menampilkan topologi sesuatu daerah. Beberapa map digital yang dapat digunakan antara lain Gtopo 30 dan SRTM. Selain menggunakan peta digital, pathloss 4.0 juga dapat menerima masukan topologi daerah secara manual yang berdasarkan dari survey lapangan maupun study peta.
Adapun proses untuk memasukkan data terrain adalah sebagai berikut:
1. Pilih menu Configure, pilih sub menu terrain data base.
2. Pilih primary data base, isi pilihan dengan peta digital yang tersedia (dalam hal ini adalah peta SRTM)
3. Tekan tombol setup primary
4. Pilih menu file, sub menu BIL-HDR-BLW
5. Pilih folder dimana file SRTM disimpan. Selanjutnya copy data SRTM tersebut.
Sebelum pathloss dapat menggunakan data tersebut, beberapa parameter harus disetting terlebih dahulu. Parameter yang utama perlu disetting adalah letak geografis dari site A dan site B. Jadi tiap site perlu diketahui nilai nominal koordinat sebelumnya. Sehingga tahapan yang perlu dilakukan adalah :
1. Pada menu summary diperlukan untuk mengisi data letak nominal site dan informasi umum lainnya.
2. Pilih menu terrain data, menu configure sub menu geographic default.
3. Pilih datum WGS 1984, elipsoid wgs 84, dan latitude southern hemisphere, longitude eastarn hemisphere.
4. Pilih grid coordinate system UTM dan second format nearest 0.01 second.
5. Pilih menu configure, sub menu terrain data base.
6. Pilih tipe peta digital SRTM pada primarynya, kemudian klik tombol setup primary. Pilih menu file BIL-HDR-BLW
7. Cari folder dimana peta SRTM disimpan, dan pilih open. Pilih close dan tekan tombol ok.



Gambar 3.3 Menu Utama Pathloss 4.0





Gambar 3.4 Mensetting Geographic default


Gambar 3.5 Setting geographic default


Gambar 3.6 Setting terrain data base



Gambar 3.7 Terrain data base menggunakan SRTM


Adapun cara untuk menampilkan kondisi terrain suatu jalur titik ke titik adalah sebagai berikut:
1. Isi data nominal site A dan site B pada menu summary.
2. Pilih menu terrain data, pilih menu operation, generate profile.
3. Isi data distance increment. Semakin kecil nilai distance increment, semakin detail informasi perubahan terrain view.
4. Tekan tombol generate. Secara otomatis topologi geografi antara kedua titik site akan tampil. Selanjutnya tekan tombol copy.
5. Selanjutnya dapat ditambahkan penghalang baik berupa pohon maupun gedung diantara kedua titik tersebut. Caranya dengan mengklik dua kali pada structure filed dan pilih stuktur yang ingin ditambahkan dengan informasi ketinggian struktur tersebut.


Gambar 3.8 Terrain data yang belum terisi


Gambar 3.9 Memunculkan terrain view


Gambar 3.10 Menentukan Kerapatan Terrain view



Gambar 3.11 Mengcopy Terrain view pada pathloss


Gambar 3.12 Menambahkan Strukture pada terrain

3.13 Terrain dengan struktur
3.3 Menentukan Ketinggian Antena Minimum

Adapun tahapan untuk menentukan ketinggian antena adalah sebagai berikut:
1. Pilih menu Antenna heights.
2. Klik tombol Optimize (tombol bergambar kalkulator) untuk mendapatkan ketinggian optimum antena yang diperlukan.
3. Untuk menentukan sendiri ketinggian antena dapat digunakan menu set microwave antenna heights.
4. Isi data ketinggian antena dan ketinggian tower yang akan digunakan untuk masing-masing site pada kolom yang tersedia.

Gambar 3.14 Mensetting ketinggian antenna


3.4 Menampilkan hasil profile yang telah dibuat

Adapun proses untuk menampilkan profile diantara dua site jalur titik ketitik adalah dengan memilih menu print profile. Secara otomatis akan tergambar kondisi terrain, LOS jarak antara site, elevasi pada site, dan ketinggian antenna yang disetting.


Gambar 3.15 Module Print Profile

3.5 Menggunakan Menu Worksheet

Parameter dari perangkat yang akan digunakan pada jalur titik ke titik akan dimasukkan pada menu worksheet. Dengan kata lain informasi mengenai perangkat yang akan digunakan dimasukkan pada module ini. Oleh karena itu seorang perancang harus memahami mengenai perangkat yang akan dipakai. Pada bagian ini merupakan bagian yang akan menentukan performa link yang kita inginkan. Memberikan parameter yang tepat dan benar akan memberikan performa link yang terbaik. Adapun proses untuk mendapatkan link budget jalur komunikasi radio ini adalah:
1. Menentukan Metode keandalan.
Untuk mensetting metode kaandalan jalur komunikasi ini adalah sebagai berikut:
1. Pilih menu worksheet, selanjutnya pilih menu operation.
2. Pilih sub menu reliability options.
3. Pilih metode keandalan yang akan digunakan, presentasi waktu keandalan, metode perhitungan, tipe radio yang akan dirancang, dan standart region.



Gambar 3.16 Mensetting Keandalan jaringan
2. Memilih data daerah hujan site

Indonesia termasuk daerha hujan golongan P dimana intensitas hujan termauk besar.Untuk menentukan daerah hujan jalur komunikasi radio yang digunakan adalah sebagai berikut:
1. Buka Menu worksheet.
2. Klik Gambar awan
3. Pilih Polarisasi yang digunakan dan juga metode pembagian wilayah daerah hujan yang digunakan.
4. Tekan tombol Load rain file. Pilih golongan daerah hujan yang sesuai dengan daerah dimana site akan didirikan.


Gambar 3.17 Mensetting Polarisasi dan daerah hujan
3. Memberikan tambahan informasi keadaan bumi pada profil topografi

Adapun informasi yang ditambahkan pada bagian ini adalah informasi mengenai ketinggian topografi yang berada didaratan rendah ataukah dataran tinggi, serta memberikan informasi mengenai kelembapan daerah dimana site tersebut dibuat. Tahapan untuk memeberikan informasi ini adalah sebagai berikut:
1. Klik pada gambar terrain.
2. Akan muncul menu path profile data. Pilih menu geoclimatic factor. Pilih klasifikasi terrain yang sesuai dan juga kelembapan daerah yang sesuai.



Gambar 3.18 Data Profil topografi


Gambar 3.19 Mensetting faktor geografi
4. Memilih peralatan radio yang digunakan

Sebagai perancang jaringan radio, tentunya kita perlu mengetahui parameter-parameter radio yang akan kita gunakan. Karena informasi mengenai spesifikasi radio yang akan kita gunakan ini menentukan nilai sinyal yang dapat dipancarkan serta sinyal yang dapat diterima selain daripada informasi mengenai keandalan alat yang akan digunakan tersebut. Adapun cara untuk menambahkan informasi mengenai parameter radio yang akan digunakan adalah sebagai berikut:
1. Buka menu worksheet.
2. Klik pada simbol TR. Klik pada tombol lookup.
3. Pilih radio yang akan digunakan dan tekan tombol both.



Gambar 3.20 Menentukan radio yang akan digunakan

Gambar 3.21 Memilih radio yang akan digunakan
5. Memilih Antena yang digunakan

Tahapan untuk memasukkan data antena adalah sebagai berikut:
1. Pilih menu worksheet. Klik gambar antena.
2. Klik menu lookup, pilih antena yang akan digunakan.



Gambar 3.22 Informasi antena yang akan digunakan


Gambar 3.23 Memilih antena yang akan digunakan
6. Memilih Frekuensi yang digunakan
Tahapan untuk memasukkan data frekuensi adalah sebagai berikut:
1. Pilih menu worksheet. Klik gambar ch.
2. Klik menu lookup, pilih frekuensi yang akan digunakan.


Gambar 3.24 Frekuensi yang digunakan



Gambar 3.25 Memilih frekuensi yang akan digunakan
7. Menampilkan hasil perhitungan

Setelah semua parameter kita isi, maka tahapan selanjutnya adalah menampilkan hasil perhitungan yang akan diimplementasikan pada site yang akan dibuat. Adapun tahap untuk menampilkan informasi lengkap mengenai hasil perhitungan ini adalah sebagai berikut:
1. Buka menu worksheet, klik menu report, pilih menu fullreport.
2. Selanjutnya akan ditambilkan secara penuh hasil perhitungan software tersebut.



Gambar 3.26 Full report